Kako poenostavite sin (x + (3π) / 2) cos x?

Kako poenostavite sin (x + (3π) / 2) cos x?
Anonim

Odgovor:

# -cos ^ 2x #

Pojasnilo:

#sin (pi + (pi / 2 + x)) cosx #

to vem #sin (pi + alpha) = - sin (alfa) #

# = - sin (pi / 2 + x) cosx #

to vem #sin (pi / 2 + alpha) = cos (alfa) #

# = - cosxcosx #

# = - cos ^ 2x #

Odgovor:

# -cos ^ 2x #

Pojasnilo:

Razširi #sin (x + (3pi) / 2) "z uporabo" barvne (modre) "formule dodatka #

#barva (oranžna) barva "opomnik" (rdeča) (bar (ul (| (barva (bela) (a / a) barva (črna) (sin (A + B) = sinAcosB + cosAsinB) barva (bela) (a / a) |))) #

#rArrsin (x + (3pi) / 2) = sinxcos ((3pi) / 2) + cosxsin ((3pi) / 2) #

#color (oranžna) "Opomnik" #

#color (rdeča) (bar (ul (| (barva (bela) (a / a) barva (črna) (cos ((3pi) / 2) = 0 "in" sin ((3pi) / 2) = - 1) barva (bela) (a / a) |))) #

#rArrsinxcos ((3pi) / 2) + cosxsin ((3pi) / 2) #

# = 0-cosx = -cosx #

#rArrsin (x + (3pi) / 2) cosx = -cosx (cosx) = - cos ^ 2x #