Odgovor:
Pojasnilo:
Prvi kvadrant
tudi v prvem kvadrantu in tako,
Zdaj,
Če je theta v drugem kvadrantu kot
za kar greh
Tukaj,
Poišči vrednost theta, če, Cos (theta) / 1 - sin (theta) + cos (theta) / 1 + sin (theta) = 4?
Theta = pi / 3 ali 60 ^ @ OK. Dobili smo: costheta / (1-sintheta) + costheta / (1 + sintheta) = 4 Zdaj ignoriramo RHS. costheta / (1-sintheta) + costheta / (1 + sintheta) (costheta (1 + sintheta) + costheta (1-sintheta)) / ((1-sintheta) (1 + sintheta)) (costheta ((1-sintheta) ) + (1 + sinteta)) / (1-sin ^ 2theta) (costheta (1-sintheta + 1 + sintheta)) / (1-sin ^ 2theta) (2costheta) / (1-sin ^ 2theta) Pitagorejska identiteta, sin ^ 2teta + cos ^ 2tea = 1. Torej: cos ^ 2theta = 1-sin ^ 2theta Zdaj, ko vemo, da lahko, pišemo: (2costheta) / cos ^ 2theta 2 / costheta = 4 costheta / 2 = 1/4 costheta = 1/2 theta = cos ^ - 1 (1/2)
Naj ve (x) vektor, tako da je vec (x) = ( 1, 1), "in naj" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], to je rotacija Operater. Za theta = 3 / 4pi poiščite vec (y) = R (theta) vec (x)? Naredite skico, ki prikazuje x, y in θ?
To se izkaže kot vrtenje v nasprotni smeri urinega kazalca. Lahko uganete, koliko stopinj? Naj bo T: RR ^ 2 | -> RR ^ 2 linearna transformacija, kjer T (vecx) = R (theta) vecx, R (theta) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Upoštevajte, da je bila ta transformacija predstavljena kot transformacijska matrika R (theta). Kar pomeni, da je R rotacijska matrika, ki predstavlja rotacijsko transformacijo, lahko R pomnožimo z vecx, da dosežemo to transformacijo. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >> Za matriko MxxK in KxxN je rezultat barvna (zelena) (
Pokažite, da (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Glej spodaj. Naj bo 1 + costheta + isintheta = r (cosalpha + isinalpha), tukaj r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2) ) -2) = 2cos (theta / 2) in tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) ali alfa = theta / 2, nato 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) in lahko napišemo (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n z uporabo DE MOivrejevega izreka kot r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 *