Odgovor:
Glej dokaz v oddelku o razlagi.
Pojasnilo:
Opazimo to, v #Delta ABC in Delta BHC #, imamo, # / _B = / _ BHC = 90 ^ @, "common" / _C = "common" / _BCH in,., #
# / _A = / _ HBC rArr Delta ABC "je podoben" Delta BHC # #
Njihove ustrezne strani so sorazmerne.
#:. (AC) / (BC) = (AB) / (BH) = (BC) / (CH), t.j. (AC) / (BC) = (BC) / (CH) #
#rArr BC ^ 2 = AC * CH #
To dokazuje # ET_1 #. Dokaz. T # ET'_1 # je podobna.
Dokazati # ET_2 #, to pokažemo #Delta AHB in Delta BHC # so
podobno.
V #Delta AHB, / _AHB = 90 ^ @:. /_ABH+/_BAH=90^@……(1)#.
Tudi, # / _ ABC = 90 ^ @ rArr /_ABH+/_HBC=90^@………(2)#.
Primerjava # (1) in (2), /_BAH=/_HBC…………….(3)#.
Tako, v #Delta AHB in Delta BHC, # imamo, # / _ AHB = / _ BHC = 90 ^ @, /_BAH=/_HBC…………. ker, (3) #
#rArr Delta AHB "je podoben" Delta BHC. #
#rArr (AB) / (BC) = (BH) / (CH) = (AH) / (BH) #
Iz # 2 ^ (nd) in 3 ^ (rd) "razmerje", BH ^ 2 = AH * CH #.
To dokazuje # ET_2 #