Odgovor:
Ortocenter je
Pojasnilo:
Določite enačbo nadmorske višine, ki gre skozi točko
Upoštevajte, da je naklon črte 0, zato bo višina navpična črta:
To je nenavadna situacija, kjer nam enačba ene od višin daje x koordinato ortocentra,
Določite enačbo nadmorske višine, ki gre skozi točko
Naklon, m, črte med točkami
Naklon, n nadmorskih višin, bo naklon pravokotne črte:
Uporabi pobočje,
Enačba nadmorske višine skozi točko
Vrednost x iz enačbe 1 nadomestite z enačbo 2, da bi našli koordinato y ortocentra:
Ortocenter je
Kaj je ortocenter trikotnika s koti (1, 2), (5, 6) in (4, 6) #?
Ortocenter trikotnika je: (1,9) Naj bo trikotnikABC trikotnik z vogali pri A (1,2), B (5,6) inC (4,6) Let, bar (AL), bar (BM) in bar (CN) sta nadmorski višini na straneh (BC), bar (AC) oziroma bar (AB). Naj bo (x, y) presek treh višin. Nagib palice (AB) = (6-2) / (5-1) = 1 => nagib palice (CN) = - 1 [:. nadmorska višina] in bar (CN) skozi C (4,6) Torej, equn. bar (CN) je: y-6 = -1 (x-4), tj. barva (rdeča) (x + y = 10 .... do (1) Zdaj, nagib bar (AC) = (6-2) ) / (4-1) = 4/3 => nagib bar (BM) = - 3/4 [:. Višina] in prečka (BM) skozi B (5,6) Torej, ekvivalent bar (BM) ) je: y-6 = -3 / 4 (x-5) => 4y-24 = -3x + 15, tj.
Kaj je ortocenter trikotnika s koti (1, 3), (5, 7) in (2, 3) #?
Ortocentru trikotnika ABC je H (5,0) Naj bo trikotnik ABC z vogali pri A (1,3), B (5,7) in C (2,3). torej, naklon "linije" (AB) = (7-3) / (5-1) = 4/4 = 1 Let, bar (CN) _ | _bar (AB):. Nagib "line" CN = -1 / 1 = -1 in poteka skozi C (2,3). : .Equn. "line" CN, je: y-3 = -1 (x-2) => y-3 = -x + 2 oz. x + y = 5 ... do (1) Zdaj je naklon "črte" (BC) = (7-3) / (5-2) = 4/3 Let, bar (AM) _ | _bar (BC):. Naklon "črte" AM = -1 / (4/3) = - 3/4 in poteka skozi A (1,3). : .Equn. "line" AM, je: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3 oz. 3x + 4y = 15 ... do (2) presečišče &q
Kaj je ortocenter trikotnika s koti (1, 3), (5, 7) in (9, 8) #?
(-10 / 3,61 / 3) Ponovitev točk: A (1,3) B (5,7) C (9,8) Ortocenter trikotnika je točka, kjer je linija višin glede na vsako stran (poteka skozi nasprotno točko). Torej potrebujemo le enačbe dveh vrstic. Nagib črte je k = (Delta y) / (Delta x) in naklon črte, ki je pravokotna na prvo, je p = -1 / k (ko je k! = 0). AB-> k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC-> k = (8-7) / (9-5) = 1/4 => p_2 = -4 Enačba črte (skozi C), v kateri je določena višina, ki je pravokotna na AB (y-y_C) = p (x-x_C) => (y-8) = - 1 * (x-9) => y = -x + 9 + 8 => y = -x + 17 [1] Enačba linije (skozi A), v kateri je določena viši