Če je tan alpha = x + 1 & tan bita = x-1, potem ugotovite, kaj je 2cot (alfa-bita) =?

Če je tan alpha = x + 1 & tan bita = x-1, potem ugotovite, kaj je 2cot (alfa-bita) =?
Anonim

Odgovor:

# rarr2cot (alfa-beta) = x ^ 2 #

Pojasnilo:

Glede na to, # tanalpha = x + 1 in tanbeta = x-1 #.

# rarr2cot (alfa-beta) #

# = 2 / (tan (alfa-beta)) = 2 / ((tanalpha-tanbeta) / (1 + tanalpha * tanbeta)) = 2 (1 + tanalphatanbeta) / (tanalpha-tanbeta) #

# = 2 (1+ (x + 1) * (x-1)) / ((x + 1) - (x-1)) #

# = 2 (prekliči (1) + x ^ 2zaključi (-1)) / (prekliči (x) + 1povzroči (-x) +1 = 2 x ^ 2/2 = x ^ 2 #

Odgovor:

# 2cot (alfa-beta) = x ^ 2 #

Pojasnilo:

Imamo # tanalpha = x + 1 # in # tanbeta = x-1 #

Kot #tan (alfa-beta) = (tanalpha-tanbeta) / (1 + tanalphatanbeta) #

# 2cot (alfa-beta) = 2 / tan (alfa-beta) = 2 (1 + tanalphatanbeta) / (tanalpha-tanbeta) #

= # 2 (1+ (x + 1) (x-1)) / (x + 1- (x-1)) #

= # 2 * (1 + x ^ 2-1) / (x + 1-x + 1) #

= # (2x ^ 2) / 2 = x ^ 2 #