Rešite to: abs (2cos3x) = 1 ---> (x = ... + ...)?

Rešite to: abs (2cos3x) = 1 ---> (x = ... + ...)?
Anonim

Odgovor:

# x = 2 / 3kpi + -pi / 9 # in # x = 2 / 3kpi + - (2pi) / 9 #

Pojasnilo:

Kot # | 2cos3x | = 1 #, imamo

prav tako # 2cos3x = 1 # t.j. # cos3x = 1/2 = cos (pi / 3) #

in # 3x = 2 kpi + -pi / 3 # ali # x = 2 / 3kpi + -pi / 9 #

ali # 2cos3x = -1 # t.j. # cos3x = -1 / 2 = cos ((2pi) / 3) #

in # 3x = 2 kpi + - (2pi) / 3 # ali # x = 2 / 3kpi + - (2pi) / 9 #