Odgovor:
Pojasnilo:
Ker moramo obravnavati zaporedna cela števila,
Njihov dodatek, tj.
Zato, reqd. št. so,
Srednja vrednost petih števil je -5. Vsota pozitivnih števil v nizu je 37 večja od vsote negativnih števil v nizu. Kaj bi lahko bile številke?
Ena od možnosti je -20, -10, -1,2,4. Spodaj si oglejte omejitve glede izdelave nadaljnjih seznamov: Ko pogledamo povprečje, vzamemo vsoto vrednosti in jih delimo s številom: "mean" = "vsota vrednosti" / "število vrednosti" povprečje 5 števil je -5: -5 = "vsota vrednosti" / 5 => "vsota" = - 25 Od vrednosti, smo rekli, da je vsota pozitivnih števil 37 več kot vsota negativnih številke: "pozitivna števila" = "negativna števila" +37 in ne pozabite, da: "pozitivna števila" + "negativna števila" = - 25 Uporabljam P za pozitivne in N za n
Deset števk dvomestne številke presega dvomestne številke enot za 1. Če so številke obrnjene, je vsota nove številke in prvotne številke 143.Kakšna je prvotna številka?
Prvotna številka je 94. Če ima dvoštevilčno celo število v desetkratni številki in b v enotni številki, je številka 10a + b. Naj bo x enota števila prvotne številke. Njihova desetkratna številka je 2x + 1, število pa je 10 (2x + 1) + x = 21x + 10. Če so številke obrnjene, je desetkratna številka x, enotna številka pa 2x + 1. Obrnjeno število je 10x + 2x + 1 = 12x + 1. Zato (21x + 10) + (12x + 1) = 143 33x + 11 = 143 33x = 132 x = 4 Prvotno število je 21 * 4 + 10 = 94.
Poznavanje formule za vsoto N celih števil a) kaj je vsota prvih N zaporednih kvadratnih števil, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Vsota prvih N zaporednih številk kocke Sigma_ (k = 1) ^ N k ^ 3?
Za S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Imamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 reševanje za sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni vendar sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tako sum_ {i = 0} ^ ni ^ 2 = (n) +1) ^ 3 / 3-