Kako uporabljate verižno pravilo za razlikovanje y = (x ^ 2 + 5x) ^ 2 + 2 (x ^ 3-5x) ^ 3?

Kako uporabljate verižno pravilo za razlikovanje y = (x ^ 2 + 5x) ^ 2 + 2 (x ^ 3-5x) ^ 3?
Anonim

Odgovor:

# (dy) / (dx) = 2 (2x + 5) (x ^ 2 + 5x) +6 (3x ^ 2-5) (x ^ 3-5x) ^ 2 #

Pojasnilo:

Pravilo verige: # (dy) / (dx) = (dy) / (du) * (du) / (dx) #

To naredimo dvakrat, da dobimo oboje # (x ^ 2 + 5x) ^ 2 # in # 2 (x ^ 3-5x) ^ 3 #

# d / (dx) (x ^ 2 + 5x) ^ 2 #: Let # u = x ^ 2 + 5x #, potem # (du) / (dx) = 2x + 5 #

# (dy) / (du) = 2 (x ^ 2 + 5x) #

Torej # (dy) / (dx) = 2 (2x + 5) (x ^ 2 + 5x) #

# d / (dx) 2 (x ^ 3-5x) ^ 3 #: Let # u = x ^ 3-5x #, potem # (du) / (dx) = 3x ^ 2-5 #

# (dy) / (du) = 6 (x ^ 3-5x) ^ 2 #

Torej # (dy) / (dx) = 6 (3x ^ 2-5) (x ^ 3-5x) ^ 2 #

Zdaj dodamo oba skupaj, # (dy) / (dx) = 2 (2x + 5) (x ^ 2 + 5x) +6 (3x ^ 2-5) (x ^ 3-5x) ^ 2 #