Vprašanje # 0d91d

Vprašanje # 0d91d
Anonim

Odgovor:

# y = (3/4) (2-x ^ 2).

Pojasnilo:

Prikličite identiteto: # sin ^ 2theta = (1-cos2theta) /2.

Zato

# y = 3sin ^ 2theta = (3/2) (1-cos2theta).…………..(1)

Ampak, to je podano # x = sqrt (2cos2theta), #

tako da # x ^ 2/2 = cos2theta.

Zdaj, postavite to vrednost # cos2theta # v (1), dobimo,

# y = (3/2) (1-x ^ 2/2) = (3/4) (2-x ^ 2).

Odgovor:

# y = (x ^ 2-2) / - 2 #

Pojasnilo:

# y = 3sin ^ 2theta #

# x = sqrt (2cos2theta) #

# x ^ 2 = 2cos2theta #

=# 2cos ^ 2theta-2sin ^ 2theta #

=# 2cos ^ 2theta-2 / 3y #

=# 2 (1-1 / 3y) -2 / 3y #

=# 2-4 / 3y #

tako

# y = -3 / 4 (x ^ 2-2) #